《集合与函数概念》本章概述
本章知识内容分为两大部分:第一部分是“集合”,这部分研究了集合的三个内容:集合的含义与表示、集合的基本关系、集合的基本运算.在小学和初中我们已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,都有了一定的感性认识.在此基础上,本教材首先结合实例引入了集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出了子集的概念.此外,还给出了与子集相联系的全集与补集的概念,接着,又讲述了集合运算的交集、并集的初步知识.第二部分是“函数”,这部分研究了函数的两个内容:函数的概念及表示、函数的单调性及奇偶性.在中学,函数的学习大致可分为三个阶段,第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等简单的函数,了解了它们的图象、性质等.本章学习的函数概念、基本性质与后续将要学习的基本初等函数是函数学习的第二个阶段,这是对函数概念的再认识阶段.第三阶段是选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.
集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.通过本模块的学习,使学生学会使用最基本的集合语言表示有关数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,发展运用集合语言进行交流的能力.
函数是中学数学中最重要的基本概念之一,是描述客观世界变化规律的重要数学模型.通过本模块的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,感受用函数概念建立模型的过程与方法,为后续学习奠定基础.